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An effort is made to understand turbulence in fluid systems like the oceans and 
atmosphere in which the Richardson number is generally large. Toward this 
end, a theory is developed for turbulent flow over a flat plate which is moved 
and cooled in such a way as to produce constant vertical fluxes of momentum 
and heat. The theory indicates that in a co-ordinate system fixed in the plate the 
mean velocity increases linearly with height z above a turbulent boundary layer 
and the mean density decreases as 23, so that the Richardson number is large far 
from the plate. Near the plate, the results reduce to those of Monin & Obukhov. 

The curvature of the density profile is essential in the formulation of the theory. 
When the Curvature is negative, a volume of fluid, thoroughly mixed by turbu- 
lence, will tend to flatten out a t  a new level well above the original centre of mass, 
thereby transporting heat downward. When the curvature is positive a mixed 
volume of fluid will tend to fall a similar distance, again transporting heat down- 
ward. A well-mixed volume of fluid will also tend to rise when the density profile 
is linear, but this rise is negligible on the basis of the Boussinesq approximation. 
The interchange of fluid of different, mean horizontal speeds in the formation of 
the turbulent patch transfers momentum. As the mixing in the patch destroys 
the mean velocity shear locally, kinetic energy is transferred from mean motion 
to disturbed motion. The turbulence can arise in spite of the high Richardson 
number because the precise variations of mean density and mean velocity 
mentioned above permit wave energy to propagate from the turbulent boundary 
layer to the whole region above the plate. At the levels of reflexion, where the 
amplitudes become large, wave-breaking and turbulence will tend to develop. 

The relationship between the curvature of the density profile and the transfer 
of heat suggests that the density gradient near the level of a point of inflexion 
of the density curve (in general cases of stratified, shearing flow) will increase 
locally as time goes on. There will also be a tendency to increase the shear 
through the action of local wave stresses. If this results in a progressive reduction 
in Richardson number, an ultimate outbreak of Kelvin-Helmholtz instability 
will occur. The resulting sporadic turbulence will transfer heat (and momentum) 
through the level of the inflexion point. This mechanism for the appearance of 
regions of low Richardson number is offered as a possible explanation for the 
formation of the surfaces of strong density and velocity differences observed in 
the oceans and atmosphere, and for the turbulence that appears on these surfaces. 
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1. Introduction 
A problem of great interest in studies of the atmosphere and oceans is the 

relationship between turbulence and the gravitational stability of these fluid 
systems. If we restrict consideration to smaller disturbances in which vertical 
velocities are an appreciable fraction of horizontal velocities, a relevant measure 
of stability is the Richardson number, 

where x is a vertical distance, po is a representative density, PI is the mean density, 
and ii is the mean horizontal velocity. We understand that p refers to potential 
density when the fluid is compressible. In  addition to Ri, expressed in terms of the 
mean gradients at a level z, we also refer to an overall Richardson number, Ri* cal- 
culated for a whole layer of fluid in terms of the density and velocity gradients 
averaged over the layer. The symbol Ri' represents a local Richardson number, 
measured in terms of the local density gradient and local shear in the disturbed 
motion. 

The orders of magnitude of Ri in the oceans and atmosphere tend to be large 
and, according to theories of instability in stratified shearing currents dating 
back to Taylor (1931a), a large Richardson number is strongly stabilizing with 
respect to the growth of small disturbances. Yet turbulence is a characteristic 
feature of the oceans and atmosphere. An example is the analysis by Taylor 
(1931b) of observations in the Kattegat by Jacobsen showing a diffusion of 
salt thousands of times greater than that corresponding to molecular processes 
at  Richardson numbers of 100 or more. Also, smoke-puff experiments by Kellogg 
(1956) led Stewart (1959) to infer that the atmosphere is a t  least weakly turbulent 
everywhere except possibly in very local regions. More recent observations 
(Woods 1968; Reiter 1969) show that strong or moderate turbulence in regions 
outside the turbulent boundary layers is of a patchy nature and occurs near thin 
layers or sheets of strong vertical shear and density gradient in which Ri is of 
order one. Apparently, some mechanism exists that creates layers of strong velo- 
city and density gradients in which Kelvin-Helmholtz instability develops. 

The nature of the turbulence in the regions between the sheets observed by 
Woods and the layers of clear-air turbulence observed by aircraft is the subject 
of controversy. Such regions may be laminar everywhere or, as indicated by 
Kellogg's observations, weakly turbulent everywhere. On the other hand, Woods 
(private communication) suggests on the basis of preliminary observations in 
the oceans that such regions are generally laminar but with occasional patches 
of turbulence. If, as seems likely, these regions have Richardson numbers larger 
than t, the origin of the turbulence that may exist is different from the growing 
and breaking of small waves as occurs in Kelvin-Helmholtz instability (Miles 
1963; Miles & Howard 1964). Indeed wave-breaking and turbulence can occur 
at  large Richardson numbers if there is an appreciable source of disturbances. 
For example, the passing of air over mountains and hills can cause the formation 
and breaking of internal waves in the troposphere and stratosphere. These 
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breaking waves occur also in laboratory experiments (Long 1955) in which the 
overall Richardson number is effectively infinite. It seems very likely that 
many sources of disturbances can cause waves to form and break in regions of 
large Richardson number; one example is the motion and acceleration of frontal 
surfaces in the atmosphere. Another may be the disturbances in the turbulent 
boundary layers of the oceans and atmosphere. 

The present paper contains a theoretical analysis of an idealized experiment in 
which turbulence of a patchy nature is presumed to exist in regions of large 
Richardson numbers. As mentioned above, the turbulence may come from break- 
ing waves which originate from disturbances in the turbulent boundary layer. 

2. Idealized experimental model 
Accordingly, consider the problem of an infinite, turbulent liquid in mean 

motion along the z axis over a cooled, smooth plate at z = 0. Originally, there may 
be two plates a distance H apart, moving in opposite directions along the x axis, 
heated above and cooled below to produce a stable vertical density distribution 
and a weak vertical shear. If the motion is statistically steady, and if mean 
quantities do not vary horizontally, the vertical fluxes of heat and momentum 
will be constant. If, now, the upper plate is moved further and further away, but 
the speeds and temperatures of the plates are adjusted to yield the same fluxes, 
we may, conceivably, neglect the upper plate for z 4 H .  

With the Boussinesq approximation, the equations of motion, continuity, and 

(1) 
heat conduction are dv 

- = -Vp-pk+VV2V, 
dt 

v . v  = 0, (2) 

where v (u, v, w) is the vector velocity, v is the viscosity, K is the conductivity, 
and p is related to density p1 and some representative density po by the equation, 

Po 
B 

P1 = Po + ~- P. (4) 

For the sake of simplicity, we will consider K and v to be of the same order. 
When there are two plates a t  z = 0 and z = H ,  the parameters of the problem 

are v, K, H, hu, and h p ,  where - Au and Au are the speeds of the lower and upper 
plates along the x axis, and where the plates are maintained at  'densities' Ap and 
- Ap, respectively. The quantities, 

~ 

7 = V l l , - d W '  ( 5 )  

and q = KP2- w'P', (6) 
are proportional to the vertical fluxes of horizontal momentum and heat, and 
are constant in space and time. One of our basic assumptions is that if v and K ,  
are arbitrarily small, the flow is turbulent at almost all levels in the channel, 
even in cases of large RP, in the sense that the fluxes of momentum and heat are 
dominated almost everywhere by the second terms on the right of (5) and (6). The 

- 
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assumption of turbulence appears to be unreasonable at  first glance because of 
the strong gravitational stability associated with large Richardson numbers. 
We show later that the fluid can assume certain distributions of mean density 
and mean velocity that permit disturbances from the turbulent boundary layers 
to grow and develop into turbulence in regions of large Ri. 

Turbulent fluxes 

In the experiment with the two heated, moving plates, the overall Richardson 
number is 

As already discussed, we will assume that this number is large. We now define 
the length 1 = ( A U ) ~ / A ~ .  Since l /H is small, the most reasonable assumption for 
r and q is a power-law dependence on this number, i.e. 

where s1 and s2 are unknown exponents. It is reasonable to assume that u' and w' 
do not exceed Au and that p' does not exceed Ap in order of magnitude; then s1 
and s2 are non-negative. Indeed, we anticipate generally weak and sporadic 
turbulence in the interior at  large Ri, so that correlations between w', u' and 
between w', p' are expected to be low. We assume, therefore, that s1 and s2 are 
both positive. Let us now increase H and adjust Au and A p  accordingly to main- 
tain the same r and q. As H gets very large, we suppose that H will no longer 
affect conditions at  heights z < H ,  so that we may adopt T, q, z, 11 and h- as the 
only quantities that determine conditions near the plate. In  physical terms, this 
assumption implies that disturbances have dimensions much less than H when 
the Richardson number is large. 

3. Viscous sublayer at a smooth plate 
In 5 3 and in 5 4, we will analyze the boundary layers over a flat plate at z = 0. 

We will assume that the plate is smooth so that molecular effects will be import- 
ant sufficiently close to z = 0. Near the plate, therefore, T and q are given by the 
molecular terms in (5) and (6). From boundary-layer theory, the thickness of the 
viscous layer 1, is such that ubl, N v, where u, is the mean speed just outside. But 
since r is of the order of the first term on the right of ( 5 ) ,  ub w dblv, so that 
1, N v / d .  Therefore, assuming Y N K ,  we have, as a first approximation in the 

where fl, g, and zll ,  are of order 0ne.t 
The Richardson number is proportional to v and is very small in this layer. 

As a result, the density variation has a negligible dynamical effect, and the source 
of vorticity for disturbances that may exist is the basic shear. Thus$ 

u' - a,E, N r4. 

t, $ For footnotes see facing page. 



Turbulence in stratijied Jluid.9 353 

u' v' N w' N 76,  (10) 

1, 12 1, (11) 

Since I, is the only length unit in the viscous sublayer, the equation of continuity 
yields 

where l , ,  I , ,  I, are the length scales of the disturbances in the directions of x, y, z. 
Finally, since density tends to be a convected quantity, we assume that p' N &lb, 
or 

(12) 
9 p' 2. 

The above estimates make all terms in the governing equations of the same 
order, except the p' term in the vertical perturbation equation of motion. Its 
ratio to the first-order terms is lb/lm, where 1, = r*/q is one of the fundamental 
lengths in the regions outside the viscous sublayer. 

4. Turbulent boundary layer 
At the outer edge of the laminar layer, the motion becomes turbulent, by sup- 

position. We neglect molecular effects in this region. We also neglect the distance 
between the plates H compared to the length 1,. It follows that 

in this region, where f2, g2, zll,, and the Richardson number are all of order one. 
The turbulent scales also follow directly from dimensional analysis. Thus 

(14) 
9 p' N - 
76' 

U' N V' N W' N r k ,  1, N I, N I, - I,. 
If there is a region such that 1, < z < I,, the assumption (Millikan 1938) that 

the solutions in regions x N I,, z N l,, have overlapping validity yields 

t The use of the symbolism a N b or alb - 1 is the same as in boundary-layer theory 
(see e.g. Schlichting 1955). More precisely, suppose we imagine that we have solved the 
problem for, say ?&. We may write, quite generally, 

where I ,  = T s / q ,  and el = lb/l,, e2 = lm/H.  If, in a certain range of z and for arbitrarily 
small el, %, this reduces to the form, 

where XI, S, are functions of el, eZ, then we say that ;Ei,7/Slq, z/lmX,, are of order one. The 
same applies to other mean quantities. 

$ When we use a perturbation quantity in connoxion with order-of-magnitude argu- 
ments, we really mean some appropriate averaged quantity, 8.g. the root-mean-square of 
u' instead of u' itself. 

23 F L M  42 
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where A ,  and B, are constants of order one. This is the logarithmic layer which 
also occurs in turbulent flow of a homogeneous fluid over a smooth or rough 
surface (Goldstein 1938). 

In  the logarithmic layer, the only term of lower order in the equations is again 
p’, and its ratio to the first-order terms is of order 

2 Ri - -. 
lm 

This suggests that the full form of the solution for U, in the logarithmic layer 
and above is 

This agrees with a suggestion of Monin & Obukhov (1954). We call 1, the Monin- 
Obukhov length. 

5. The interior region 
Let us now consider the interior region x - H .  Here the length H is of funda- 

mental importance, although the properties of the disturbance and mean fields 
must be those of the last section as we approach the plates. 

A basic physical assumption for the boundary layers and now for the interior 
is that the length scales of the disturbances be much smaller than the height of the 
channel. This is related to the presence of density variations, of course, because, 
if A p  = 0,  the only length that can determine the size of the disturbances is H 
itself. A non-zero Ap, on the other hand, introduces another length 1 into the 
analysis. In  physical terms, the stability of the density field will tend to limit the 
vertical scale? of the disturbances. 

The stability should also inhibit the outbreak of turbulence, and, with this 
in mind, we will assume, as a fundamental physical picture of conditions in the 
interior, that much of the region is in laminar motion in which energy dissipation 
and heat transfer are negligible. Here and there are turbulent patches where 
dissipation and heat flux occur. 

According to classical stability arguments, small disturbances are stable when 
the Richardson number is large. It is quite apparent however, that finite dis- 
turbances can create conditions in which the local value of the Richardson 
number is less than the value computed from the mean fields, as large vorticities 
(large values of ui) are generated by the pressure-density effect. If the local 
Richardson number falls below 2, small disturbances, superimposed on the finite 
disturbances, are likely to grow and lead to turbulence (Phillips 1966). Since we 
have assumed that turbulence exists in the interior, we will now assume that 
the amplitudes of the wave motion are large enough to yield local Richardson 
numbers of order one or less. Since is small, the local Richardson number has 
the form. 

P s  +Pi  
u;, * 

t As we will see, it also reduces the horizontal scale of the disturbances. 
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We may estimate 

where 6 is a length of the order of the wave amplitude, and 1;* is the order of the 
vertical derivative in the disturbed motion. Also, from the vorticity equation 
for the disturbed vorticity c, we get 

I N 6  so that u, N -, 4 
where N is the Brunt-Vaisak frequency, i.e. 

N = Ips\$. 
Thus the local Richardson number has the form, 

1 + A ( V 3 )  

&=/I: ' . _  
where A is of order one. 

We now estimate the disturbed velocity. The third equation of motion yields 

W' N p'N-' N N6, 

ZL' - N - - .  

The equation of continuity now reveals that 1, N I,. The local Richardson number 

(21) 

(22) 
613 

4 and ( 18) yields 

is of order 
1; @ + A $ .  1 

Thus, as the amplitude increases, the local Richardson number drops to order 
one when the amplitude becomes of the order of the wavelength. This indicates 
that turbulence in the interior will occurt if some of the waves become large, 
despite high values of Ri. 

Curvature of the density projile 

One of the fundamental concepts of this paper is the idea that finite amplitude 
waves tend to break down into turbulence, and that the resulting turbulent 
patches effect the heat transport from higher to lower levelsin a way that depends 
utterly on the curvature of the mean density projile. We may approach this in two 
ways. The most direct is to suppose that a turbulent region of linear dimensions 
l p  is produced by breaking of internal gravity waves. We assume the patch is 
initially undisturbed with density given by p ( z ) .  It is then disturbed by waves 
which break and mix the patch thoroughly When this happens, it will tend to 
flatten out and seek the level at which the environmental density equals the 

Bretherton (1969) has suggested that the local Richardson number will drop to values 
of order one (less than t)  in certain regions simply as the result of chance superpositions of 
waves. 

23-2 
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average density of the patch. If the new level is different from the original level 
of the centre of mass of the material, heat will be transported vertically by this 
process. If z, is taken at  the centre of mass, the average value of p for the mixed 

approximately, where A is of order one, and L is the height of the centroid above 
the centre of mass. The patch flattens out at a height Lp above or below the centre 

(25)  
of mass given by Ap l2 

7% 
L, - ~ zz " + L +  .... 

The distance L is easily computed. Using (4), and baking z = 0 at  the centroid, 
it  is 

where dv is the element of volume of the patch and M is its ma,ss. Expanding 
p = p ( z )  about the centroid we get 

( P  + p z z  +pzz*22 + . . . ) zdv 

dv 

where p ,  pz,  P,, are evaluated at the Centroid. Evaluating, we get 

where A ,  B, C ,  D, . . . are of order one. Since 1, is much less than the vertical scale 
of the mean motion, the dominant terms give 

The ratio of L to the first term in (25) is of order p / g  or, using (4) of order (pl  - po)/po. 
This is small of the order of terms neglected in the Boussinesq approximation, 
so that the vertical displacement of the patch, the mixing length of the process, 
is 1 12 

and is proportional to the curvature of the density profile. Notice that the patch 
rises when the curvature is negative and falls when the curvature is positive. In 
either case heat is transported downward. 

The flux of heat may be computed by writing 

q - AKFZ, (28) 

where A ,  is the coefficient of eddy diffusion and is given by the product of the 
mixing length L,, the vertical velocity of the patch wp N NL,, and the ratio R 
of the volume of the turbulent patches to the whole volume. Thus, 
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There is another way to bring out the importance of the curvature of the density 
profile. If we form the kinetic energy equation from (l), we get 

;(;) +v. [.(.+;)I = -pw+vv.V2v, 

where c is the fluid speed. If we expand (30) in terms of mean and perturbation 
quantities and average, we get 

__ 
where we have used Uf = vuzz- (u'w')z) 

and where € = v[(Vu')2+ (Vv')2+ (VW')2] - v- ix: C) - 

(32) 

(33) 

is dominated by the positive first term andis related to viscous dissipation. Equa- 
tion (31) expresses the rate of increase of the average disturbance kinetic energy 
as a sum of four terms. The first is an advection of energy through the boundary of 
the region in question. It is easily seen that it is very small in the ratio Z,/H com- 
pared to other terms in the energy equation when integrated over the whole of 
the interior region. The last term on the right-hand side of (31) is substantially 
equal to the loss of energy by viscous dissipation in very small eddies. 

The term - w'u' Tiz represents a gain of kinetic energy of the disturbance at  the 
expense of the mean motion. Thus, if a portion of fluid is thoroughly mixed, its 
mean motion will tend to become uniform with height, and the wiping-out of the 
mean shear makes energy available for the disturbances. If we use the concept of' 
turbulent patches, the mixing of the high-velocity fluid in the upper portion of 
the patch with the low-velocity fluid in the lower portion of the patch reduces 
the energy of the mean field by an amount of order ail:. 

The term -ZIT in (31) represents a loss of disturbance kinetic energy. The 
interpretation by Richardson (1920) and others is that it  represents an increase 
of potential energy by tnrbulence as heavy fluid tends to rise and light fluid tends 
to fall to effect the heat transfer. Richardson and subsequent investigators assume 
that Tiz and w'p' are of the same order, since each represents a fundamental 
process in the turbulent motion of a stratified, shearing current. 

The relationship of the w'p' term to potential energy is important to our dis- 
cussion. Thus, consider a particle in a stratified medium at a height 6 above the 
level zo at which the mean density of the fluid equals the particle density, i.e. 

__ 

= x - zo, and p = p(zo). Neglecting pressure effects, we have 

whence, approximately, 1 2 d t  (@)'-pzC 2 = constant. (35) 

We call 
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the available potential energy of the disturbance. Let us now multiply the disturb- 
ance heat equation by p' and average. We get 

where the dissipation function, 

is dominated by the positive second term on the right. Assuming a steady state, 
(37) may be written 

~ ~ 

a ( w t v )  j j z Z w ~ p 1 2  - s 
- w'p' = - - 

az 2P: IPSl * 

If we now combine this with the steady-state energy equation (31), we get 

(39) 

The jjz, term may be related to the concept of turbulent patches by assuming 
that contributions to  w'p'2 come principally from the vertical motion of the 
patches, w p  N Lp N ,  so that 

Since wp changes sign with p,,, the curvature term in (40) always acts as a sink 
of energy as opposed to  the source of energy in the shear term. If we evaluate the 
curvature term from the transfer in the patches, we get 

__ 

- 

(41) 
- 
w'pf2 N Rw,~". 

Since this is the same as (29), we see that theFs, term in (40) is of the order of q or, 
presumably, of the order of m7&. This again suggests the essential importance 
of curvature of the density profile in the turbulent transfer mechanism. 

Culcubtion of orders of magnitude 

Let us now estimate the order of magnitude of the various mean quantities and 
perturbation quantities. We assume the following for the interior of the channel : 
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where the first set of perturbation quantities refers to  the wave motion, and the 
second set, with subscript 'e ', refers to  the turbulent motion in the patches. Some 
of the exponents of H/1, have been related by using the results we have already 
obtained, namely, 

-2 14 

PI - P,& (44) i j z z  1; R P Z P  

N )  
I , N & - C ? ,  w' -N6 ,  L p -  T ,  W P - L p N ,  q w  

P Z  

by the assumption that the horizontal scales, I,, I , ,  are equal, by the equation of 
continuity, and by the assumption of equal length scales for the turbulent motion 
in the patches. 

The remaining exponents may be found by using the following set of assump- 
tions : 

(i) We assume that the waves in the fluid of length I , ,  originate either in the 
turbulent boundary layer, and therefore have a length l,, or in the collapse of 
the patches. We also assume that the patches are formed by the breaking of 
individual waves of length I,. Accordingly, we use 

13 I,,, 1, - 1,. (45) 

(ii) When the fluid mixes in the patches, momentum is transferred from the 
upper portions to the lower portions, and this contributes to  the momentum flux 
7. Although, as we discuss later, momentum can be transferred by the wave 
motion itself, we assume that the turbulent transport is a significant portion of the 
total. Thus, we assume 

where the coefficient of eddy viscosity A ,  is the product of R, the mixing length 
for momentum 1,) and the vertical speed Nl,, i.e. 

146) 7 - A,Z,, 

A ,  - RNI;. (47) 

ruz N q (48) 

(iii) As mentioned earlier, we assume eithert 

in the kinetic energy equation (31), or - 
- - w'pQ 
7% P Z Z T  

P S  

in the total energy equation (40). 
Assumptions (i)-(iii) yield 

(49) 

n = 0 ,  d = - l ,  m = 2 ,  a = l .  (50)  

(iv) Mixing in the turbulent patches destroys the mean shear locally. This 
yields a net energy increment for t,he disturbances of Zil;. This appears to  be the 
basic process by which disturbance kinetic energy increases a t  the expense of 
the mean current. We assume that this goes directly into the kinetic energy of the 
eddy motion in the patches, i.e. 

ui2 N G3l2  2. P. (51) 

t 0. I. Taylor, in a discussion of a paper by Stewart (1959), refers to the ratio q/7Ez 
as measured in the Kattegat. He found that the ratio approached one as the flow became 
more and more stable. 
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Of course, in the breaking process, the fluid particles fall a distance of order lp ,  
and the conversion of potential energy into kinetic energy yields speeds of order 
N1,. This however, is wave motion rather than turbulent moti0n.t 

(v) We may picture the turbulent eddies of length 1, superimposed on the 
larger-scale wave motion of length I,. The local density gradients in the wave 
motion are of order p;, a.nd this means that the density fluctuations in the turbu- 
lent eddies are 

( 5 2 )  
r Ie 

P b P  - *  
13 

(vi) We assume, according to observations in the atmosphere (Vinnichenko 
& Dutton 1969), that the spectra of the small-scale (turbulent) velocity and den- 
sity fields follow the k-% law. Thus, let us assume the spectrum E ( k )  for velocity 
fluctuations and the spectrum F(k)  for density fluctuations depend only on k, 
E ,  and 6. If we demand a k-8 behaviour, dimensional analysis yields 

E(k, )  N EikF8, (53) 
8 

P(k,)  N f l c ~ n ,  
&:i 
P 

(54) 

where ep and 6, are values of the dissipation functions evaluated in the turbulent 
patches. Since 

ui2 N Jk: E(k)  dk N i$Z!, (55 )  

we find 

or 

If we integrate (37)  between the two boundary layers, we get 

so that (60) is 

Equations (51), (52) and (62) yield 

i = O ,  s = O ,  j = - Z .  (63) 

Notice that this leads to E N q. 

t A recent paper by Wu (1969) reports on an experimental study of the collapse of well- 
mixed patches of fluid in a stratified fluid. His observations support a collapse speed of 
order Nl ,  in the initial and principal stages. 
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Our results summarize as follows: 

If the upper boundary is absent so that the flow is over a single cooled plate 
at z = 0, the quantity H is missing from the analysis. All of the results in (64) 
still apply, however, if we replace H by x .  For example, 

where A,, A ,  are constants of order onet. The expressions in (64) with H replaced 
by z also hold in the two-plate problem in regions whose distance from the plate 
is much greater than I,, and much less than H .  

Wave disturbances in the interior 

The result that the mean velocity gradient is constant and that the mean density 
gradient varies as z2 in a region above the turbulent boundary layer may be 
related to the problem of breaking waves in the interior of the fluid at  high 
Richardson number. We have shown that turbulence can occur despite the 
stability if there are finite-amplitude waves, but the source of the wave energy 
was not discussed in detail. There are two sources, one from disturbances in the 
turbulent boundary layer and one from the collapse of turbulent patches. Thus, 
consider a wave-packet originating near z = 0 from eddy activity in the turbulent 
boundary layer. As shown by Booker & Bretherton (1967) and by Townsend 
(1968) some of the wave packets will propagate upwards to reflexion levels 
z, before being reflected downward. For a wave of frequency u relative to the 
plate (frequency and horizontal wavelength remain unchanged when packets 
move through a fluid of high Richardson number) this corresponds to a height at  
which the local Brunt-Vaisala frequency N(z,)  equals the frequency relative to 
the fluid, u + G(xr)/Z', where 1' is the wavelength. Since the frequency of boundary- 
layer disturbances is of order q/r, we have 

where A N 1 .  If we use the results in (65) we get 

1" 
zr - (1"/2,) - 1' 

t Monin (1969) has found verification of the prediction in (65) for the density field. His 
analysis of 40 hydrological stations in the central North Pacific shows that the law 
N(z )  = Az is fulfilled quite satisfactorily in layers of the deep ocean below a depth of 
1.5-2 km. 
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where 1" is of the order of the wavelength. Since I" - 1, for boundary-layer dis- 
turbances, wave energy in significant amounts can propagate to all levels. Simi- 
larly, we can show that wave energy generated by collapsing eddies can also 
propagate to all levels. 

A more detailed investigation may be based on a solution of the problem of 
small disturbances in a stratified flow when the basic velocity and density dis- 
tributions are those of the turbulent model. Thus, we assume 

u = pz, 
p = -&y, 

The linearized differential equation for the vertical velocity is (Phillips 1966, 
p. 179) 

where the operator is 

For the disturbances of the form. 

(67) becomes 

An approximate solution of (68) may be obtained through the WKB approxima- 
tion. It is 

where A is a constant. The reflexion level of the wave corresponds to the level at 
which the vertical wave-number becomes zero or, where 

a2z,2 = (Pz,.k - u)2. 

Taking frequencies appropriate to waves originating in the turbulent boundary 
layer, i.e. N q/r, and values of a and /3 corresponding to (65),  we again obtain 
(66) for the reflecting waves. Although the approximation fails at  the reffexion 
level, (69) indicates that the wave amplitudes will be la,rge near the reflexion level, 
suggesting a tendency for breakdown into turbulence. This may be the process 
by which the turbulent patches are formed. 

Relationship of Au, Ap to r ,  q 
It is of interest to relate the parameters r, q to the external parameters Au, A p  
in the problem of two plates. It is apparent that the velocity and density incre- 
ments over the laminar and turbulent boundary layers are small compared to 
those in the interior. In  the interior, we have 
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so that 

Therefore, 

AU Q H ,  H ~ ( E ) ~ .  
7 r2 1, 

1 2 

H 
- -N  fH) , 

In  particular, notice that strong stability greatly decreases the drag at  the two 
plates. 

We may now compute the correlation coefficients c1 and c2 involved in r and q. 
Using (64), we get 

and 

Thus 

(73) 

(74) 

The low value of the correlation coefficient c2 reflects the fact that most of the 
region is in wave motion, which is incapable of transferring heat. 

6. The formation of layers of low Richardson number 
As discussed in $ 1 ,  there is some mechanism in the oceans and atmosphere 

that causes the formation of thin layers with large density and velocity gradients, 
but with low Richardson numbers. We may relate this to the theory of this paper 
in the following way. Suppose the turbulent flow between two plates is 
developing symmetrically from some initial state, and we postulate a density 
field in which the curvature is negative in the lower half of the channel and positive 
in the upper half of the channel (as demanded by the theory and by symmetry). 
There will be a rising and sinking of turbulent patches below and above the 
middle of the channel, but near the middle, the curvature will be small and 
the heat transport low, with a resulting tendency to form a strong gradient of 
density in this layer. If no other effect intervened, this would tend to make the 
middle layer even more stable and further inhibit turbulence and heat transport. 
A mechanism exists, however, for a buildup of the velocity gradient near the 
middle. Thus, when the turbulent patches collapse at the level z, waves are 
generated with wavelength I' N lm and frequency of order 

U ( 2 )  
__ * N(2)  

I' 

relative to the bottom boundary. A portion of this wave energy associated with 
the upper sign moves upward to 'absorption' levels z,, defined as the Ievel a t  
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which the wave frequency is zero as measured by an observer moving at  speed 
U(z,) (Townsend 1968), i.e. 

m a )  %4 I N(+  
1' - 1' (77) 

The wave energy is lost to the mean velocity field in the region below the accumu- 
lation level, and gives a negative contribution to the Reynolds stress, - u'w', at 
levels between z and 2,. The same effect arises from the downward-moving waves 
from the collapsing patches above the middle of the channel. In the regions 
I,,, < z < &H in which ii, N q/7 and P, N q2z2/r21&, (77)  yields 

~ 

z , = z  l + C -  , ( t)  
where C is of order one. Since I' N I, ,  the waves originating near the plates are 
absorbed near the plates. However, those originating in the collapsing patches 
at height z are absorbed at  greater heights. If we now assume a tendency for the 
shear to increase slightly near the middle, perhaps because of a decreasing turbu- 
lent transport of momentum, there will be a tendency to collect waves from 
above and below in this region. All such waves yield positive values of u'w' so 
this will tend to increase the existing negative near the middle. The result is 
a (m), < 0 near the middle. Thus iist > 0 and the shear will increase at  an accel- 
erating rate. 

We would expect that the local iiz would increase faster than I&/, so that the 
middle layer would ultimately become unstable, break down into Kelvin- 
Helmholtz instability and thereby yield the required heat transport. To explore 
this possibility, let us assume that variations of 7 in and near the middle layer are 

(79) 

of order 7 itself. Then 

~ 

r - 
'U,t = TZ, - g, 

where 1, is the thickness of the layer. Also, since q = 0 near the middle, we have 

The local time-rate-of-change of the Richardson number is 

where 
~ 

w'p'. 

In  the layer, qzz < 0 and rz8 > 0, so that the two terms on the right of (81) are of 
opposite signs. However, the ratio of the second term to the first term is 

If p ,  and iiz have the same orders of magnitude as in the region I ,  < z < H ,  (83) 
is of order H2/12, so that the second term in (81) dominates and Ri tends to 
decrease as required for the ultimate instability of the layer. The resulting 
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turbulence will transfer the heat and momentum through the layer despite the 
infiexion point in the density profile. 

In  natural circumstances, it appears that layers of strong shear and density 
gradient will tend to form wherever the curvature of the density profile changes 
sign. This may explain the general layered nature of the atmosphere and oceans. 

While developing the ideas in this paper, I have profited from many discus- 
sions with Dr Pierre Welander of the University of Gothenburg. Indeed, Dr 
Welander was the first to arouse my interest in the subject. Part of the work was 
supported by the U.S. Department of Commerce, Environmental Science 
Services Administration under Grant E22-15-69(G) and Grant E22-36-69(G). 
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